ラベル 気候変動 の投稿を表示しています。 すべての投稿を表示
ラベル 気候変動 の投稿を表示しています。 すべての投稿を表示

2020年12月12日土曜日

2050年に鉄鋼生産工程でのCO2発生ゼロを目指すという日本製鉄の方針について

 『日本経済新聞』2020年12月11日付によれば,日本製鉄橋本英二社長は「政府が掲げる50年のゼロ目標に合わせて,鉄をつくる過程で発生しているCO2ゼロを目指す」と述べたとのこと。

 待たれていた方針だ。日本の鉄鋼業界の温暖化対策は,京都議定書の削減目標を達成したところまでは見事であったが,その後はベースライン比何百万トン削減という形での,国際社会への貢献度があいまいな目標しか立ててこなかった。2018年には日本鉄鋼連盟がゼロカーボンスチールを目指す温暖化対策ビジョンを作成して一歩踏み込んだが,そこでも世界鉄鋼業がゼロカーボンを達成するのは2100年とされていた。この達成時点を2050年に前倒しすることで,「世界的な平均気温上昇を産業革命以前に比べて2℃より十分低く保つとともに,1.5℃に抑える努力を追求する」というパリ協定の目標に見合った削減シナリオとなる。

 また報道が正確だとすれば,今回日鉄は,「電炉活用を進める」と公言したことになる。すでに日鉄は,瀬戸内製鉄所広畑地区への電炉導入を決めて布石を打っていたのだが,(報道が正確であれば)ついに公然と電炉の温暖化対策上の意義を認めた格好になる。これはJFEスチールや神戸製鋼所,また日本鉄鋼連盟にも影響を与えるだろう。これまで日本鉄鋼連盟は,「電炉の方がCO2排出原単位が小さい」という話題が出るたびに徹底して反発してきた。その背後に高炉メーカー会員の意向があったことは容易に推定できる。このかたくなさも変化すると期待できる。

 もっとも,これは必然だったと言える。そうしなければ目標が達成できないからだ。鉄鋼連盟が公表している,2100年ゼロカーボンスチールの方針は,ある程度の電炉法比率拡大を想定していた。もっとも主要な達成手段はそこにはおかず,現在開発中の部分的水素還元製鉄COURSE50を実用化した上に,さらにその先の超革新的製鉄技術,端的には完全な水素製鉄法,加えてCCSまたはCCU(二酸化炭素回収・貯留,再利用),さらに系統電源のゼロエミッション化をすべて達成することで目標を達成するとしていた。しかし,2050年に排出ゼロを実現しようとすれば,これらの次々世代技術開発は必要である一方で,そこにすべてをかけるわけにはいかないだろう。また,次々世代技術がすべて実用化されて2100年に達成では遅すぎる。10月公表の拙稿(※)で指摘したように,まず2050年に向かっては,現存する技術であるスクラップ・電炉法の適用比率をもっと拡大していくことが必要だろう。

 ただし,日鉄の方針にはより詳しく見るべき点もある。排出ゼロとするのはどの範囲なのかということだ。世界全体としての日鉄の連結あるいは持ち分法対象企業すべてなのか,それとも日本国の排出に計上される分,つまり日本国内の生産拠点についてなのか。前者であることを期待するが,後者だとすると,960万トンの還元鉄一貫システムを持つインドでの合弁事業AM/NSインディアなどは対象外ということになる。

 この点は注意が必要だ。現在,日本製鉄は粗鋼生産の量的拡張は国際M&Aで進める方針を取っている。旧エッサール・スチールをアルセロール・ミタルと共同で買収して再編したAM/NSインディアはその主力であるが,今後も同様の買収があるかもしれない。裏返すと,国内では粗鋼生産能力を拡張することはもはやなく,すでにコロナ禍以前から呉製鉄所閉鎖などの大規模な設備調整に入っている。生産設備が縮小すればCO2排出も縮小する。もしゼロカーボンの方針を国内拠点だけに適用すると,生産拠点の国内から新興国へのシフトを加速させる要因になるし,地球全体としてのCO2排出削減効果をそぐ作用も持つ。ゼロカーボンの方針を全世界の拠点に適用するか,あるいは国内でのスクラップ・電炉法へのシフトを円滑に進めれば,こうした副作用は起こらない。

 日本製鉄の立地戦略と環境戦略を総合して,今後も注視していく必要がある。

「日鉄、50年に排出ゼロ 水素利用や電炉導入」『日本経済新聞』2020年12月11日。

※川端望「日本鉄鋼業の現状と課題~高炉メーカー・電炉メーカーの競争戦略と産業のサステナビリティ~」『粉体技術』第12巻第10号,日本粉体技術工業協会,2020年10月,15-19頁。


2019年11月19日火曜日

日本製鉄広畑製鉄所の製鋼工程が電炉法に切り替わることについて

 製鉄所の再編・統合に隠れてあまり注目されていないが,日本製鉄は11月1日に,広畑製鉄所の製鋼工程を冷鉄源溶解法から電炉法に置き換えることを,第2四半期決算説明の一部として発表した。
 鉄鋼業界は,1980年代の円高不況期に過剰設備の削減に乗り出したが,この時,新日鉄(当時)の計画には広畑製鉄所の高炉休止が含まれていた。バブルを経て多少の延期はあったものの高炉は1993年に休止し,同年に製鋼工程は転炉法から冷鉄源溶解法に転換した。
 1996年に見学した際の記録によってまとめると,冷鉄源溶解法とは,型銑(固体・常温の銑鉄)とスクラップを加熱し,溶解炉で溶解して溶銑(融けた高温の銑鉄)と類似の鉄源を確保する方法であった。最初に前回のため湯100トンを残しておき,そこにスクラップや,大分製鉄所から運んできた型銑などの冷鉄源を投入する。その比率は当時は半々であった。これに上下から酸素・冷却LPG・窒素・粉炭を吹き込んで溶解し,出銑して取鍋にあける。以後は,高炉・転炉法と同じで,取鍋内で脱硫処理を行った後,脱炭炉(転炉)で脱炭・精錬し,さらに二次精錬を行ってから連続鋳造機に送り,鋳造してスラブにする。スラブが圧延やメッキを施されて各種の鋼板類になる。
 このプロセスならば高炉・転炉法と類似の品質の鉄源を確保できる。こうして,広畑製鉄所では圧延工程で電磁鋼板やブリキ,電気亜鉛めっき鋼板を含む高級鋼板を製造してきたのである。もっとも,半分以上は他の製鉄所から来るスラブを圧延していた。
 しかし,通常の高炉・転炉法よりコストも時間もかかる。高炉・転炉法では高炉から出銑された溶銑(融けた高温の鉄)が転炉に装入されるのに対して,冷鉄源溶解法では,大分製鉄所でいったん冷えて固まった銑鉄を広畑まで運び,もう一度加熱・溶解しているからである。
 広畑の製鋼工程は新日鉄時代から日本製鉄の長年の悩みの種であったため,今回,これを電炉法に切り替えるのは画期的な変革となり得る。ただ,公表資料には「高炉由来の高品位原料を活かし」とも書いてあるので,電炉法への切り替え後も,鉄源として型銑に依存する比率は高いのかもしれない。そうすると,いくらか画期性はそがれることになる。
 この上は,できる限りスクラップ比率を高めて欲しい。それが今回の措置の意義を高めるからだ。スクラップを主要鉄源にできればCO2排出原単位が画期的に低下するし,製銑工程を必要としないために製鉄所をコンパクトにできる。そして,冷鉄源溶解法が品質のために犠牲にしてきたコスト競争力を回復させられる。スクラップ・電炉法によって,差別化競争力の源泉である高級鋼板を製造できるのであれば,広畑製鉄所はコスト的にお荷物状態だった中型製鉄所から,未来型のコンパクト製鉄所に転換する。そして日本製鉄の未来には,地球温暖化の危機の時代に生き残るための一筋の光が差し込むことになるだろう。

「2019年度第2四半期決算説明会」日本製鉄株式会社,2019年11月1日。

2020年12月12日追記。その後の日本製鉄の温暖化対策。

ジェラルド・A・エプシュタイン(徳永潤二ほか訳)『MMTは何が間違いなのか?』東洋経済新報社,2020年を読んで

 ジェラルド・A・エプシュタイン(徳永潤二ほか訳)『MMTは何が間違いなのか?』東洋経済新報社,2020年。原題もGerald A. Epstein, What's wrong with modern money theory?なので邦題は間違っていないのだが,内容はタイ...